大功率稳压电路设计在本文所设计的可调稳压大功率电源中,其系统中的大功率稳压电路部分,主要包括有稳压电路和扩流电路。稳压电路主要是获得稳定的输出电压,扩流电路主要是在稳压芯片的输出电流不能满足负载电流要求时,采用扩大电流的方式提高电路的输出电流满足负载应用的。一部分为稳压电路,LM2596ADJ开关电压调节器输出电流.大为3A,同时具有很好的线性和负载调节特性。12V供电时,输出电压范围广(1.2V~12V±4),能够满足不同的电压需求。稳压电路的具体电路系统中,调整w和B两端串联电阻的阻值可以调整稳压电路的输出电压值。大功率稳压电路的第二个组成部分为扩流电路。在本方案中,我们选择开关电源芯片LM2596ADJ来构成其稳压核心部分,由此所组成的稳压电路能够输出.大3A的电流,而实验用BOSCH牌经济燃油泵额定工作电流为3.5A。工作过程中,当油泵两端的电压较高时,要求的输出电流会在10A左右。为满足电机负载的工作需要,需提高电路的输出电流。上述电路在结构上主要采用两个大功率PNP三极管3AD53对稳压电路进行扩流,扩流后的电流理论上能够到达10A,但是稳压电路的输出电压始终摆脱不了三极管的非线性区带来的影响。所以方案1被排除。稳定性设计方法分析法:根据闭环系统的理论、数学及电路模型进行分析(计算机仿真)。实际上进行总体分析时,要求所有的参数要精.确地等于规定值是不大可能的,尤其是电感值,在整个电流变化范围内,电感值不可能保持常数。同样,能改变系统线性工作的较大瞬态响应也是很难预料到的。试探法:首先测量好脉宽调整器和功率变换器部分的传递特性,然后用“差分技术”来确定补偿控制放大器所必须具有的特性。要想使实际的放大器完全满足.优特性是不大可能的,主要的目标是实现尽可能地接近。具体步骤如下:(1)找到开环曲线中极点过零处所对应的频率,在补偿网络中相应的频率周围处引入零点,那么在直到等于穿越频率的范围内相移小于315°(相位裕度至少为45°);(2)找到开环曲线中EsR零点对应的频率,在补偿网络中相应的频率周围处引入极点(否则这些零点将使增益特性变平,且不能按照期望下降);(3)如果低频增益太低,无法得到期望的直流校正那么可以引入一对零极点以提高低频下的增益。大多数情况下,需要进行“微调”,.好的办法是采用瞬态负载测量法。经验法:采用这种方法,是控制环路采用具有低频主导极点的过补偿控制放大器组成闭环来获得初始稳定性。然后采用瞬时脉冲负载方法来补偿网络进行动态优化,这种方法快而有效。其缺点是无法确定性能的.优。样的电源算稳定?测试标准是波特图对应于小信号(理论上的小信号是无限小的)扰动时系统的响应;但是如果扰动很大,系统的响应可能不是由反馈的线性部分决定的,而可能是由非线性部分决定的,如运放的压摆率、增益带宽或者电路中可能达到的.小、.大占空比等。当这些因素影响系统响应时,原来的系统就会表现为非线性,而且传递函数的方法就不能继续使用了。因此,虽然小信号稳定是必须满足的,但还不足以电源的稳定工作。因此,在设计电源环路补偿时,不但要考虑信号电源系统的响应特性,还要处理好电源系统的大信号响应特性。电源系统对大信号响应特性的优劣可以通过负载跃变响应特性和输入电压跃变响应特性来判断,负载跃变响应特性和输入电压跃变响应特性存在很强的连带关系,负载跃变响应特性好,则输入电压跃变响应特性一定好。对开关电源环路稳定性判据的理论分析是很复杂的,这是因为传递函数随着负载条件的改变而改变。各种不同线绕功率元器件的有效电感值通常会随着负载电流而改变。此外,在考虑大信号瞬态的情况下,控制电路工作方式转变为非线性工作方式,此时仅用线性分析将无法得到完整的状态描述。